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Abstract

The construction of score-driven �lters for nonlinear time series

models is described and it is shown how they apply over a wide range

of disciplines. Their theoretical and practical advantages over other

methods are highlighted. Topics covered include robust time series

modeling, conditional heteroscedasticity, count data, dynamic corre-

lation and association, censoring, circular data and switching regimes.
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1 Introduction

One of the principal aims of time series modeling is to construct �lters, that is

functions of current and past observations, that estimate where we are now,

where we were in the past and where we might be in the future. These ob-

jectives are called nowcasting, smoothing and forecasting respectively. When
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models are linear and Gaussian, the optimal solutions to all three problems

are given by the Kalman �lter and smoother. For nonlinear models, re-

cent work has shown that observation-driven models based on the score of

the conditional distribution provide an integrated solution to the forecasting

problem that is theoretically sound and yields results that, on the whole,

compare favourably with those obtained by competing methods.

The purpose of observation-driven nonlinear models is to estimate a

changing moment and so they entail setting up a dynamic equation driven by

a variable whose expectation is equal to that moment. The generalized au-

toregressive conditional heteroscedasticity (GARCH) model, which is widely

used in �nance, is a leading example. Many other nonlinear models have

dynamics based on arbitrary forcing variables whose main appeal is a simple

interpretation. While such models are important historically, they become

less appealing once the score-driven solution becomes apparent. The use of

the score guards against features of the data, such as extreme values, that

might throw a �lter o¤ course. In contrast to moment-based models, robust-

ness is automatically built into the �lter. More generally the score leads to

the construction of forcing variables in �lters that respect the key features of

the data and whose forms have a natural and intuitive interpretation even in

cases where the analytic expression is complex; scores for dynamic copulas

are a good illustration.

The de�ning characteristic of observation-driven models is that they are

formulated in terms of the one-step ahead predictive distribution. Hence

the likelihood function is immediately available. This is not the case with

nonlinear parameter-driven models, a distinction due to Cox (1981). At one

time parameter-driven models seemed the way forward as they could impose

a meaningful structure that re�ected the nature of the problem and could

potentially impose the kind of restrictions on the parameter space inherent

in linear state space models. More computing power and the attendent al-

gorithmic development led to an increase in the use of computer-intensive
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approaches, especially Bayesian methods; see Durbin and Koopman (2012).

However, when observation-driven models are driven by the score the balance

shifts and, in many situations, they become more attractive than parameter-

driven models. Indeed a score-driven model can be regarded as providing

an approximation to the computer-intensive solution for the correspond-

ing parameter-driven unobserved components model. Koopman, Lucas and

Scharth (2016) demonstrate that the approximation is usually a very good

one.

This article discusses the score-driven approach to modeling in a wide

range of situations. The aim is to consolidate the new results that have ap-

peared since the publication of the book1 by Harvey (2013) and the articles

by Creal, Koopman and Lucas (2011, 2013). However, it is not intended to be

comprehensive in its coverage. A full list of papers can be found on the web-

site at the Free University of Amsterdam, that is http://www.gasmodel.com/index.htm.

Some packages already exist for estimating score-driven models. The

new TSL package of Lit et al (2020) is menu-driven and intended to be a

companion to the STAMP package of Koopman et al (2020). Programs in R

are provided by Ardia et al (2019).

2 Unobserved components and �lters

A simple Gaussian signal plus noise model for T observations, y; : : : ; yT ; is

yt = �t + "t; "t � NID
�
0; �2"

�
; t = 1; : : : ; T; (1)

�t+1 = ��t + �t; �t � NID(0; �2�);

where the irregular and level disturbances, "t and �t respectively, are mutually

independent and NID(0; �2) denotes normally and independently distributed

1Score-driven model are called dynamic conditional score (DCS) models in Harvey
(2013) and generalized autoregressive score (GAS) models in Creal et al (2013).
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with mean zero and variance �2. The autoregressive parameter is � and the

signal-noise ratio is q = �2�=�
2
":

The unobserved component model in (1) is in state space form and, as

such, it may be handled by the Kalman �lter. The parameters � and q

can be estimated by maximum likelihood, with the likelihood function con-

structed from the one-step ahead prediction errors. The Kalman �lter can be

expressed as a single equation which combines �tjt�1; the optimal estimator

of �t based on information at time t � 1; with yt in order to produce the
best estimator of �t+1. Writing this equation together with an equation that

de�nes the one-step ahead prediction error, vt; gives the innovations form of

the Kalman �lter:

yt = �tjt�1 + vt; (2)

�t+1jt = ��tjt�1 + ktvt:

The Kalman gain, kt; depends on � and q. In the steady-state, kt is constant.

When the disturbance term, "t; in (1) is non-Gaussian, the Kalman �lter

is no longer optimal, unless attention is con�ned to linear �lters. The main

ingredient in the score-driven approach is the replacement of vt in the Kalman

�lter by a variable, ut; that is proportional to the score, @ ln f(yt;�)=@ ln�;

of an assumed conditional distribution, f(yt;�). Thus the second equation

in (2) becomes

�t+1jt = ��tjt�1 + �ut; (3)

where � is treated as an unknown parameter. The dynamics in a score-driven

model need not be con�ned to location. A �lter such as (3) may be cast in

terms of the score with respect to any parameter, �. When the information

matrix is time-invariant, and the model is identi�able, the asymptotic dis-

tribution for the maximum likelihood estimator may be derived; see Harvey

(2013, ch 2).

Likelihood-based tests can be constructed. For example, a test of time-
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variation may be carried out, prior to �tting a model, by a portmanteau

test constructed from the autocorrelations of the scores in the static model.

A test of this kind can be derived as a Lagrange multiplier test of the null

hypothesis that �0 = �1 =����= �P�1 = 0, against the alternative that �i 6= 0
for some i = 0; :::; P � 1; in the dynamic model

�tjt�1 = ! + �0ut�1 = ���� = �P�1ut�P ; t = 1; :::; T ; (4)

see Harvey (2013, sect 2.5), Harvey and Thiele (2016) and Calvori et al

(2017).

3 Distributions and scores

The location-dispersion model is

yt = �+ '"t; �1 < yt <1; t = 1; :::; T; (5)

where � is location, the scale, ' > 0, is called the dispersion and "t is a

standardized variable with a probability density function (PDF) that depends

on one or more shape parameters. With an exponential link function, ' =

exp�; the score for � is

@ ln ft(yt;�; �)=d� = (yt � �)@ ln ft(yt;�; �)=@�� 1; t = 1; :::; T:

For a non-negative variable, the location/scale model is

yt = '"t; yt � 0; t = 1; :::; T; (6)

where the standardized variable, "t; has unit scale. The location is propor-

tional to the scale, ': Provided the mean of "t exists, E(yt) = 'E("t):

Many of the distributions used for location-dispersion and location/scale

models are related. As a result there is a unity in much of the technical
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discussion as it pertains to score-driven models. The generalized beta dis-

tribution of the second kind (GB2) distribution plays a prominent role. Its

PDF is

f(yt;'; �; �; &) =
�(yt=')

���1

�B(�; &) [(yt=')
� + 1]

�+&
; yt � 0; '; �; �; & > 0; (7)

where ' is the scale parameter, �; � and & are shape parameters and B(�; &)

is the beta function; see Kleiber and Kotz (2003, Ch 6). GB2 distributions

are fat-tailed2 for �nite � and & with upper and lower tail indices of � = &�

and � = �� respectively. The GB2 distribution contains many important

distributions as special cases, including the Burr (� = 1) and log-logistic

(� = 1; & = 1). Other distributions are derived by simple transformations,

as in the cases of F , generalized�t and exponential generalized beta of the
second kind. All the scores are functions of a variable that has a standard

beta distribution.

The GB2 distribution, (7), can be reparameterized so that the (upper)

tail index replaces &; that is we de�ne � = �&. To get the generalized gamma

as a limiting case as � ! 1 it is necessary to rede�ne the scale parameter

in the GB2 distribution as '�1=� so that its PDF becomes

f(yt;'; �; �; �) =
�(yt=')

���1

'��B(�; �=�) [(yt=')
� =� + 1]

�+�=�
; yt � 0; '; �; �; � > 0:

(8)

The generalized gamma distribution is thin-tailed and the distributions of the

scores are functions of a variable that has a standard gamma distribution.

The stationary �rst-order score-driven model corresponds to the Gaussian

innovations form, (2), and is

yt = �tjt�1 + vt = �tjt�1 + exp(�)"t; t = 1; :::; T;

�t+1jt = � + ��tjt�1 + �ut; j�j < 1; (9)

2Embrechts, Kluppelberg and Mikosch (1997) de�ne various categories of tails.
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where ! = �=(1 � �) is the unconditional mean of �tjt�1, "t is a serially

independent, standardized variate and ut is proportional to the conditional

score. More generally, a quasi-ARMA-type model of order (p; r) is

�t+1jt = �+�1�tjt�1 = ���� = �p�t�p+1jt�p+�0ut+�1ut�1 = ���� = �rut�r: (10)

More than one component is possible. These components may be nonsta-

tionary, as in the model with trend and seasonality estimated by Caivano et

al (2016). Explanatory variables can be introduced as in Harvey and Luati

(2014).

An important aspect of the score-driven model is to guard against outliers.

The attractions of using the t-distribution for this purpose are discussed in

Lange, Little and Taylor (1989). In this article the t-distribution is discussed

in the wider context of the generalized-t and exponential GB2 distributions

and the connections with the robustness literature, as described in Maronna

et al (2006), explored.

3.1 Student-t and Generalized-t

The generalized Student t distribution proposed by McDonald and Newey

(1988) contains the general error distribution (GED) and the Student t dis-

tribution as special cases. The PDF is

f(yt;�; �; �) =
�

2�1=�
1

B(1=�; �=�)

1

(1 + j(yt � �)='j� =�)(�+1)=�
; �1 < yt <1;

(11)

where � and � are positive shape parameters and � = 2 gives Student�s t

with � degrees of freedom. The distribution has fat tails when the tail index,

�; is �nite. Letting � ! 1 yields the GED, with � = 1 giving the Laplace

or double exponential distribution and � = 2 the Gaussian distribution. The

absolute value of a generalized-t variable has a GB2 density in the form (8),

but with the constraint � = 1=�; so the mode is at zero. When location is
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dynamic, its conditional score is

@ ln ft(yt;�tjt�1; �; �)

@�tjt�1
=
� + 1

�e�
(1� bt) j"tj��1 sgn(yt � �tjt�1), (12)

where

bt =
(
��yt � �tjt�1

�� e��)�=�
(
��yt � �tjt�1

�� e��)�=� + 1 ; 0 � bt � 1; 0 < � <1; (13)

is distributed as beta (1=�; �=�); see Harvey and Lange (2017). Provided �

is �nite, the score (in�uence) function of location is redescending in that it

approaches zero as y moves away from zero.

Because the u0ts are IID(0; �
2
u); that is independent and identically distrib-

uted with zero mean and variance �2u; �tjt�1 is weakly and strictly stationary

so long as j�j < 1: All moments of ut exist and the existence of moments of
yt is not a¤ected by the dynamics. The autocorrelations can be found from

the in�nite moving average representation. The patterns are as they would

be for a Gaussian model; see Harvey (2013, chapter 3). Maximum likelihood

estimation is straightforward and for a �rst-order dynamic equation, as in

(9), an analytic expression for the information matrix is available.

3.2 Exponential generalized beta distribution of the

second kind (EGB2)

The EGB2 distribution results from taking the logarithm of a variable with

a GB2 distribution, (7). It has light (exponential) tails. When � = &, it

is symmetric, with � = & = 1 giving a logistic distribution. The normal

distribution is obtained as a limiting case when � = & !1.
The score function is bounded for positive � and &; giving a gentle form
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Figure 1: Location score for t4 (thick line), logistic (thin) and normal
(straight line). All these distributions have unit standard deviation.

of Winsorizing. Speci�cally,

@ ln ft(yt;�tjt�1; '; �; �; &)=@�tjt�1 = �(� + &)bt(�; &)� ��; t = 1; :::; T;

where

bt(�; &) = e(yt��tjt�1)�=(e(yt��tjt�1)� + 1): (14)

has a beta distribution with parameters � and &: Because 0 � bt(�; &) � 1; it
follows that as yt !1; the score approaches an upper bound of �&, whereas

yt ! �1 gives a lower bound of ���; see Caivano and Harvey (2014).
Figure 1 constrasts the score with that of a t4 distribution. The shapes are

unaltered if the scores are divided by their information quantities.
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4 Scale

Since the 1980�s, the generalized autoregressive conditional heteroscedastic-

ity (GARCH) model has been the standard way of modeling changes in

the volatility of returns; see Bollerslev et al (1994). It is a moment-based

observation-driven model in which the conditional variance is a linear func-

tion of past squared observations. The �rst-order case, the GARCH (1; 1)

model, is

yt = �+ �tjt�1"t; "t � IID(0; 1); t = 1; ::; T; (15)

and

�2tjt�1 = � + ��2t�1jt�2 + �y2t�1; � > 0; � � 0; � � 0: (16)

The GARCH-t model introduced by Bollerslev (1987) has long been an in-

dustry standard. The restrictions on the parameters ensure that the variance

remains positive. An alternative way of achieving this objective is to set up

the dynamic equation in terms of the logarithm of �2tjt�1: This is the expo-

nential GARCH (EGARCH) model of Nelson (1991). In the corresponding

parameter-driven stochastic volatility (SV) model, the logarithm of the stan-

dard deviation, �t in

yt = �+ �t"t; �2t = exp (2�t) ; "t � IID (0; 1) ; (17)

is an unobserved component. It is usually set up as a Gaussian �rst-order

autoregessive process, though it seems that here is no compelling reason for

an assumption of Gaussianity. The likelihood function is not available in

closed form, so computer-intensive methods are needed to estimate it e¢ -

ciently. Nelson showed that the EGARCH model could be regarded as an

approximate �lter for the SV model. However, in his classic formulation

the conditions for the existence of the moments of the observations do not

normally hold when the conditional distribution is Student t with �nite de-

grees of freedom. Using the score to de�ne the forcing variables solves this
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problem3.

The score-driven EGARCH model is set up as

yt = �+ "t exp(�tjt�1); t = 1; :::; T; (18)

where the "0ts are independently and identically distributed with location

zero and unit scale4. The stationary �rst-order dynamic model for �tjt�1; the

logarithm of the scale, is

�t+1jt = !(1� �) + ��tjt�1 + �ut; j�j < 1; (19)

where ut is the score of the distribution of yt conditional on past observations,

�1j0 = ! and � and � are parameters. When the conditional distribution is fat

tailed, the score is bounded and so extreme observations are downweighted.

As is clear from (16), this does not happen with the GARCH-tmodel. Letting

the conditional distribution be Student t leads to a model known as Beta-

t-EGARCH. The stationarity conditions are straightforward because in (19)

all that is required is that j�j < 1 and, as Harvey and Lange (2017) show,

the invertibility conditions of Blasques et al (2018) will be satis�ed in most

practical situations. This model has now been widely applied and shown

to be more attractive than the standard GARCH-t model from both the

practical and theoretical points of view; see for example, Harvey (2013, ch

4) and Catania and Nonejad (2019).

4.1 Generalized-t EGARCH

A generalized Student t distribution in (18) gives what Harvey and Lange

(2017) call the Beta-Gen-t-EGARCHmodel. The GED is a limiting case, but

the problem with the resulting Gamma-GED-EGARCH model is that the

3The solution is implied in Bollerslev et al (1994), where a forcing variable based on
the generalized-t distribution is proposed. However, the idea was not followed up.

4The variance need not exist.
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score is not bounded and so is vulnerable to fat tails. The classic EGARCH

model of Nelson (1991) is a special case of the Gamma-GED-EGARCH

model obtained when the distribution of the observations is Laplace. The

conditional score for the logarithm of the dynamic scale parameter of the

generalized-t distribution is

ut = @ ln ft(yt;�tjt�1; �; �)=@�tjt�1 = (� + 1) bt � 1; (20)

where bt is as in (13), but with scale dynamic, rather than location. As

jytj ! 1; ut ! �; so the score is bounded for �nite �. This re�ects a general

result that in a location-scale model with a fat-tailed distribution, the score

for location is re-descending whereas the score for scale is not.

The fact that bt is distributed as beta (1=�; �=�) enables exact expressions

for the moments and autocorrelations of jytjc ; �1 < c < �; to be found

and the information matrix to be constructed. Much of the theory can be

further extended to handle skewness and asymmetry. The advantage of the

generalized t distribution is that it has a sharp peak when � < 2 and this

turns out to be characteristic of many series of returns; for example Harvey

and Lange (2017) estimate � to be 1:34 for silver returns.

4.2 Asymmetric impact curves (leverage)

The response of volatility to a change in asset price, yt; is often asymmetric.

This asymmetry, or leverage, can be captured in an EGARCH model by the

modi�cation

�t+1jt = ! (1� �) + ��tjt�1 + �ut + ��u�t ; (21)

where ut is the scale score of (20), u�t =sgn(�"t)(ut + 1) and �� is a new
parameter which, because the negative of the sign of the return is taken, is

usually expected to be positive. When the distribution of "t is symmetric,

u�t has zero mean and E(utu
�
t ) = 0: The information matrix for a Beta-t-

EGARCH model with dynamics as in (21) is given in Harvey (2013, pp.
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Figure 2: Impact curve for t5 against a standardized y: Thick line is sym-
metric, thin line has � = �� and medium line is anti-symmetric.

121-4). Identi�ability requires only that either � or �� be non-zero, so Wald

and likelihood-ratio tests of the null hypothesis that one of them is zero can

be carried out.

Figure 2 shows the impact curves, �ut + ��u�t ; for the Beta-t-EGARCH

model for a t5 distribution. The curves, which are plotted against the stan-

dardized variable, yt; range from the symmetric, in which � = 1 and �� = 0;

to the anti-symmetric in which � = 0 and �� = 1: In the intermediate case,

when � = �� = 1; positive values of yt have no e¤ect on volatility.

The standard way of incorporating leverage e¤ects into GARCH models

is to include a variable in which the squared observations are multiplied by an

indicator, I(yt < 0); taking the value one for yt < 0 and zero otherwise; see

Glosten, Jagannathan and Runkle (1993, p 1788). This model is unable to

allow for the asymmetric response in Figure 2. The sign is not used because

it could give a negative conditional variance.
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4.3 Components and long memory

Long memory in scale may be modelled by a fractionally integrated process.

For example, Janus et al (2014) �t the ARFIMA score-driven model

(1� L)d(�t+1jt � !) = �(1� L)d (�tjt�1 � !) + �ut;

where L is the lag operator, to four stocks and �nd values of d between 0.43

and 0.75. A more appealing approach is to �t two components. Thus with

leverage included,

�tjt�1 = ! + �1;tjt�1 + �2;tjt�1; t = 1; :::; T;

�i;t+1jt = �i �i;tjt�1 + �i ut + ��i u
�
t ; i = 1; 2;

(22)

where �1 > �2 if �1;tjt�1 denotes the long-run component. Identi�ability

requires �1 6= �2; which is implicitly imposed by setting �1 > �2, together

with �1 6= 0 or ��1 6= 0 and �2 6= 0 or ��2 6= 0:
A two-component model allows di¤erent asymmetric e¤ects in the short-

run and the long-run. There seems to be a growing body of evidence sug-

gesting that an asymmetric response is con�ned to the short-run volatility

component. Indeed short-run volatility may even decrease after a good day,

as in Figure 2, because it calms the market.

4.4 ARCH in Mean

The EGARCH-M model is a modi�cation of the ARCH in mean model of

Engle et al (1987) in which a time-varying risk premium, � exp(�tjt�1); is

added to the right-hand side of (18). A two-component model not only deals

with di¤ering leverage e¤ects in the long and short run, but also makes it

possible to separate out the e¤ects of long-run and short-run movements in
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volatility on the mean. Thus the model generalizes to

yt = �+ �1 exp(! + �1;tjt�1) + �2[exp(�2;tjt�1)� 1] + "t exp(�tjt�1); (23)

where �; �1; ! and �2 are parameters. The equity risk premium is then cap-

tured by the long-run component, with an equilibrium level of �+ �1 exp!:

Harvey and Lange (2018) demonstrate that a two-component score-driven

model with symmetric long-run volatility, that is ��1 = 0; coupled with anti-

symmetric short-run volatility, that is �2 = 0; provides a good �t and yields

a plausible interpretation of market behaviour. This accords with the con-

clusion of Adrian and Rosenberg (2008, p 3015), in that the short-run com-

ponent appears to capture shocks to market skewness, whereas the long-run

component is related to business cycle risk.

5 Location/Scale

In the location/scale model, the structure is as for EGARCH, that is

yt = "t exp(�tjt�1); yt � 0; t = 1; :::; T: (24)

With the GB2 parameterization of (8), ' = exp(�tjt�1) and

@ ln ft(yt;�tjt�1; '; �; �; �)

@�tjt�1
= ut = (�� + �)bt(�; �)� ��; (25)

where

bt(�; �) =
(yte

��tjt�1)�=�

(yte
��tjt�1)�=� + 1

; t = 1; :::; T;

is distributed as beta(�; �=�). As y ! 1; the score approaches an upper

bound of �: The corresponding score for the generalized gamma distribution

is (yte��tjt�1)� � ��; with (yte��tjt�1)� distributed as a gamma variate with

unit scale and shape parameter �.
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Special cases of the GB2 distribution have been used in �nance to model

time series on the range of daily stock prices and the daily realized variance

(or volatility); see, for example, Harvey (2013, ch 5) and Opschoor et al

(2016). Realized variance may exhibit long memory and leverage e¤ects, as

well as having fat tails. A GB2 location/scale model, (24), can capture these

characteristics by employing two components, as in (22), with the leverage

determined by the sign of (demeaned) returns, rt; that is u�t =sgn(�rt)(ut +
��).

When the GB2 is parametrized as in (7) taking logarithms gives the

location-scale model

ln yt = �tjt�1 + ln "t; t = 1; :::::; T;

with ln "t having an EGB2 distribution. The fact that the EGB2 distribution

tends to a normal as �; & ! 1 shows the link with unobserved component

models such as the one used by Alizadeh et al (2002) for modeling the loga-

rithm of the intra-day range in the logarithm of an asset price or exchange

rate.

6 Count data and qualitative observations

Time series models for count data and qualitative observations need to take

account of the nature of the data in constructing dynamic equations. Despite

the lack of a general asymptotic theory for maximum likelihood estimation,

such evidence as there is lends support to the dynamics being driven by the

standardized score.
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6.1 Count data

The probability mass function of the Poisson distribution is

p(yt;�) = �yte��=yt! � > 0; yt = 0; 1; 2; ::::; (26)

where the parameter � is both mean and variance. When the mean changes

over time, an exponential link function, �tjt�1 = exp �tjt�1; ensures that it

remains positive even though �tjt�1 is unconstrained. The conditional score

of �tjt�1 is yt � exp �tjt�1; which, when divided by the information quantity,
gives ut = yt exp(��tjt�1)� 1 = yt=�tjt�1 � 1:
The negative binomial distribution allows for overdispersion. It is conve-

nient to parameterize it in terms of the mean so the probability mass function

for the dynamic model is

p(yt;�tjt�1; �) =
�(� + yt)

yt!�(�)
�yttjt�1(�+�tjt�1)

�yt(1+�tjt�1=�)
��; yt = 0; 1; 2; ::::;

where � > 0; the Poisson distribution is obtained by letting � ! 1: With

the exponential link function, dividing the score for �tjt�1 by the information

quantity gives ut = yt=�tjt�1 � 1; just as for the Poisson distribution.
Zucchini et al (2016) give weekly data on �rearm homicides in Capetown

over the period 1986 to 1991. Models were �tted to the �rst 305 observations,

assuming a random walk dynamic equation,

�t+1jt = �tjt�1 + �ut; t = 1; ::; T;

with �1j0 estimated as a �xed parameter. The negative binomial gave a log-

likelihood of �589:15, as opposed to �610:41 for the Poisson distribution.
The estimates were e� = 0:097 and e� = 4:137: The (predictive) �ltered esti-
mates, �tpt�1; and multi-step forecasts, computed using the TSL package of

Lit et al (2020), are shown in Figure 3 in the shaded area. As can be seen,

the forecasts have adapted to the higher level towards the end of the sample.
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Figure 3: Weekly �rearm homicides in Capetown, together with predictive
�lter; weekly data 1986-91. Out-of-sample period is shaded.

Harvey and Kattuman (2020) describe the �tting of a score-driven nega-

tive binomial model to data on deaths from coronavirus. The application is

described in more detail in Lit et al (2020).

The Skellam distribution is used to model the di¤erence between two

counts. Koopman and Lit (2019) set up a score-driven model to predict the

goal di¤erence in football matches.

6.2 Binomial, multinomial and ordered categorical data

In the binomial model, where the probability that yt = 1 is � and the prob-

ability that yt = 0 is 1� �; the usual link function is the logistic. Thus with
time-variation

�tjt�1 = 1=(1 + exp(��tjt�1)); t = 1; :::; T:
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The score divided by the information quantity is

ut =
yt � �tjt�1

�tjt�1(1� �tjt�1)
:

Lit et al (2020) apply the model to the annual Oxford-Cambridge boat race.

Multinomial observations can be handled by extending the binomial model;

the general logistic transformation described in Catania (2019) could be used.

Ordered categorical data require a di¤erent treatment. The observations are

de�ned in terms of intervals on a continuous distribution for a variable, xt.

The probability of being in a given interval is obtained from the CDF of xt
and these probabilities de�ne the probability mass function of the discrete

distribution of yt: Koopman and Lit (2019) model the results of football

matches using the ordered categorical variables win, draw and lose.

7 Multivariate models

This section describes dynamic models for a set of N variables in a vector yt
under the simplifying assumption that they have zero mean. The emphasis

is on changing correlation and association.

7.1 Multivariate scale and dynamic correlation

The dynamics in a general GARCH model depend on the elements of the

�ltered covariance matrix, Vtjt�1; for a multivariate�t or Gaussian distrib-
ution. As such Vtjt�1 contains a large number of parameters and it is not

clear how best to impose restrictions. Furthermore there is no guarantee that

Vtpt�1 will be positive de�nite at all points in time. A better way forward is

to follow Creal et al (2011) and work with a scale matrix, 
tjt�1; that allows

volatility and correlation parameters to be separated by the decomposition


tjt�1 = Dtjt�1Rtjt�1Dtjt�1; (27)
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where Dtjt�1 is diagonal and Rtjt�1 is a positive-de�nite correlation matrix

with diagonal elements equal to unity. An exponential link function may

be used for the volatilities in Dtjt�1: Joint modeling of dynamic scale and

correlation can be based on a dynamic equation of the form

�t+1jt= (I��)! +��tjt�1+Kut;

where �tjt�1= (�
0
tjt�1;


0
tjt�1)

0; with the N(N � 1)=2 vector 
tjt�1 determin-
ing Rtjt�1 and �tjt�1 modeling the EGARCH e¤ects. The parameters are

contained in the � and K matrices and the ! vector; these are typically

restricted.

The attraction of implementing the score-driven approach in this way

becomes clear when modeling changing correlation. Consider the simple set-

up of a bivariate model with a conditional Gaussian distribution and let

the variances be time-invariant. Dividing the observations by their standard

deviations gives variables x1t and x2t: It might be thought that the product

of x1t and x2t provides the information needed to drive the dynamics of

correlation, but this turns out not to be the case. In order to keep the

correlation coe¢ cient, �tjt�1; in the range, �1 � �tjt�1 � 1, the link function

�tjt�1 = tanh(
tjt�1) = (exp(2
tjt�1)� 1)=(exp(2
tjt�1) + 1) (28)

may be used. The dynamic equation for the unconstrained variable 
tjt�1
depends on the score, which, when written in terms of �tjt�1; is

u
t = (1� �2tjt�1)
�1(x1t � �tjt�1x2t)(x2t � �tjt�1x1t)� �tjt�1:

The score only reduces to x1tx2t when �tjt�1 = 0: On the other hand, when

�tjt�1 is close to one, the weight given to (x1t + x2t)
2 is small and the second

term dominates. As a result u
t is negative and so �t+1jt falls unless x1t and

x2t are close; see Figure 4 and the discussion in Creal et al (2011) and Harvey

20



­1.0 ­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8 1.0

­60

­40

­20

20

40

60

rho

u

Figure 4: Plot of score, u, against correlation, rho, for bivariate Gaussian
distribution with x1 = x2 = 2 (dash) and x1 = 4; x2 = 1

(2013, ch 7).

The scores may be computed under the null hypothesis of constant cor-

relation �tjt�1 = r; where r is the maximum likelihood estimator of �; and

used in a portmanteau test. When r = 0; moment-based tests are obtained

because ut = x1tx2t, but when r 6= 0 the score-based tests can be much more
powerful; see Harvey and Thiele (2016). The tests can be modi�ed for a

bivariate t-distribution with estimated EGARCH models.

7.2 Dynamic Copulas

A copula models the association between two variables independently of their

marginal distributions. It is a joint distribution function of standard uniform

random variables, that is

C(u1; u2) = Pr(U1 � u1; U2 � u2); 0 � u1; u2 � 1:
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As such it provides a comprehensive measure of dependence. The upper and

lower coe¢ cients of tail dependence are often of special interest in the context

of risk; see McNeil et al (2005). When two variables have a bivariate normal

distribution, they are asymptotically independent in the tails because the

coe¢ cients of tail dependence are both zero (unless � = 1). On the other

hand, a t-copula does exhibit tail dependence.

Time-varying copulas are best modeled using the conditional score to

drive a dynamic equation for the shape parameter; see Patton (2013, pp 931-

2). The viability of this approach was �rst explored by Creal et al (2011) in

an application of dynamic Gaussian copulas to exchange rate data. Expres-

sions for the conditional score can be quite elaborate. However, a graph of

the score can show that, once obtained, it has a natural and intuitive inter-

pretation. The score for a Clayton copula in Harvey (2013, p 229) provides

an illustration.

Janus et al (2014) use the t-copula with t-marginals, thereby allowing the

degrees of freedom to be di¤erent in the marginal distributions as well as in

the joint distribution. More applications can be found in De Lira Salvatierra

and Patton (2015), Oh and Patton (2017), Lucas et al (2017) and Bernardi

and Catania (2019).

7.3 Spatial correlation, count data and location/scale

models

A number of other models for di¤erent aspects of multivariate time series

have been proposed.

7.3.1 Spatial correlation

Blasques et al (2016) set up a dynamic model for spatial autocorrelation as

yt = �tjt�1Wyt +Xt� + "t; "t � NID(0;�); t = 1; :::; T:
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whereW is the spatial weight matrix. The time-varying correlation, �tjt�1;

is a scalar kept in the range by the transformation of (28), that is �tjt�1 =

tanh(
tjt�1): The score with respect to 
tjt�1 is

ut = [y
0W0��1(yt � �tjt�1Wyt�Xt�)�trf(I��tjt�1W)�1Wg](1� �2tjt�1):

See also Billé and Catania (2019).

7.3.2 Bivariate Poisson distribution

The bivariate Poisson distribution can be �tted to two series of count data.

The parameterization is similar to that of the football example discussed

for the Skellam distribution. Koopman and Lit (2019) found the forecasting

performance of the model to be at least as good as that of the corresponding

parameter-driven model, but with only a fraction of the estimation time.

7.3.3 Dynamic location/scale model

Realized covariance can be measured in a similar way to realized variance,

leading to the construction of N �N realized volatility covariance matrices,

Yt, t = 1; :::; T: Opschoor et al (2016) propose a location/scale model that

uses a multivariate F distribution. The PDF is

f(Yt j 
tjt�1; �1; �2) = K(�1; �2)

��
tjt�1����1=2 jYtj(�1�N�1)=2���I+
�1
tjt�1Yt

���(�1+�2)=2 ; �1; �2 > N�1;

where 
tjt�1 = (�2 �N � 1)=�1)Vtjt�1 is a scale matrix, such that Vtpt�1 =

E(Yt) for �1; �2 > N�1; andK(�1; �2) = �N((�1+�2)=2)�N(�1=2)�N(�2=2);
where �N(:) is the multivariate gamma function. When �2 !1; the distri-

bution becomes a Wishart distribution, which is the multivariate generaliza-

tion of the chi�squared distribution; see Gorgi et al (2019). A single entry on

the diagonal ofYt; that is yii;t; i = 1; :::; N; is distributed as F (�1; �2�N�2).
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When �2 ! 1; the distribution becomes Wishart, the multivariate gener-

alization of the chi�squared distribution. Opschoor et al (2016) model the

dynamics of the covariance matrix directly with the �lter

Vt+1pt = V + �Vtjt�1 + �Ut; t = 1; :::; T;

where Ut is a score matrix for Vtjt�1. An alternative would be to decompose


tjt�1 as in (27).

8 Extensions

The score provides a solution to constructing viable dynamic models in non-

standard situations. Some examples are set out below.

8.1 Censoring and dynamic Tobit models

Censoring takes place when a variable above or below a certain value is

set equal to that value. When location changes over time the challenge is

how to formulate a dynamic Tobit model. A number of researchers, begin-

ning with Zeger and Brookmayer (1986), have addressed this problem when

the underlying (uncensored) observations are Gaussian. However, there is

no computational disadvantage to adopting other, more �exible, distribu-

tions. It is in this spirit that Lewis and McDonald (2014) propose the use

of generalized�t and EGB2 distributions for censored static regression and
these distributions may be similarly employed for dynamic Tobit models.

The score-driven model automatically solves the problem of how to weight

the censored observations in the dynamic location equation.

Let xt be a variable for which the observations are subject to censoring
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from below, that is

yt =

(
xt; xt > c;

c; xt � c;
�1 < xt <1: (29)

The lower bound, c; is usually known. Then Pr(yt = c) = Pr(xt � c ) =

Fx(c); where Fx is the CDF of xt. Let I(yt > c) be an indicator that is

zero when yt = c and one when yt > c: The distribution of yt is a discrete-

continuous mixture, with a point mass at c; so

ln f(yt; c) = (1� I(yt > c)) lnFx(c) + I(yt > c) ln fx(yt): (30)

The score with respect to a changing location is therefore

@ ln f(yt; c)

@�tjt�1
= (1� I(yt > 0))

@ lnFx(c)

@�
+ I(yt > 0)

@ ln fx(yt)

@�
: (31)

The logistic distribution, which is a special case of the EGB2 distribution,

has a shape close to that of the normal but with slightly heavier tails. The

score, (31), is I(yt > c)e��bt� e��(1� bt); where bt is as de�ned in (13). The
fact that the CDF of a logistic distribution has a simple closed form makes

it an attractive choice, and it has an additional robustness bene�t because,

in the absence of censoring, as when yt is positive in (31), the score implies

Winsorizing.

Dynamic volatility can also be modeled when the observations are cen-

sored. Harvey and Liao (2019) illustrate the viability of the method with

data on Chinese stock returns that are subject to an upper limit on the daily

change.

Harvey and Ito (2019) use similar techniques for modeling time series

with a variable that is continuous, except for a signi�cant number of zeroes.

They do this by shifting a continuous location/scale distribution to the left

and censoring all the negative observations so that they are assigned a value
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of zero.

8.2 Circular data

Observations on direction are circular. When circular observations are recorded

in radians, they are usually assumed to have a von Mises density

f(yt;�; �) =
1

2�I0(�)
expf� cos(yt��)g; �� < yt; � � �; � � 0; (32)

where Ik(�) denotes a modi�ed Bessel function of order k, � denotes location

(directional mean) and � is a non-negative concentration parameter that is

inversely related to scale. When � = 0 the distribution is uniform, whereas

yt is approximately N(�; 1=�) for large �:

Data generated by a time series model over the real line, that is �1 <

zt < 1; can be converted into wrapped circular time series observations in

the range [��; �) by letting yt = ztmod(2�)� �; t = 1; :::; T; as in Breckling
(1989). The score-driven model for directional data is

zt = �tjt�1 + "t; t = 1; ::::; T; (33)

where the "0ts are IID random variables from a standardized circular dis-

tribution with location zero and the forcing variable, ut; in the dynamic

equation for �tjt�1 is proportional to the conditional score. A key property of

a (continuous) circular distribution is that it satis�es the periodicity condi-

tion f(y� 2�k; �) = f(y; �); where k is an integer and � denotes parameters.

Provided the derivatives of the log-density with respect to the elements of

� are continuous, they too are circular in that the periodicity condition is

satis�ed. The conditional distribution of the wrapped observations, yt, is

therefore the same as that of zt in (33) and so the likelihood function is the

same. The problem of estimating a wrapped model, as posed by Breckling

(1989), is therefore solved and the resulting class of models has considerable
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advantages over those currently in use; see Fisher and Lee (1994).

When "t has a von Mises distribution with � = 0, the score is ut =

� sin(zt � �tjt�1) = � sin(yt � �tjt�1): For �rst-order dynamics, Harvey et al

(2019) derive the asymptotic distribution of the maximum likelihood estima-

tor.

8.3 Switching regimes and dynamic adaptive mixture

models

The dynamic adaptive mixture model (DAMM) of Catania (2019) has the

probability of being in a given regime changing over time. The dynamics

are modeled using the scores of the regime probabilities in the conditional

distribution. The model may be extended so that the locations and/or scales

in each of the regimes contained in the mixture are also dynamic. Again

the conditional scores are used, thus providing a uni�ed approach based on

well-established principles. The scores for locations and scale, like the scores

for the regime probabilities, have a natural and intuitive interpretation.

The DAMM is designed for situations similar to those addressed by the

textbook regime-switching model of Hamilton (1989). That model introduces

dynamics by a Markov chain in which there is a �xed probability of staying

in the current regime or moving to another. The regime is not observed:

hence the term hidden Markov chain, as in Zucchini et al (2016). However,

unusually for a nonlinear parameter-driven model, the probability of being

in a particular regime is ultimately given by a �lter that depends on past

observations, just as the Kalman �lter is a function of past observations

in a linear model. These probabilities yield a conditional distribution for

the current observation, as in the DAMM, but with the di¤erence that the

DAMM is formulated as observation-driven at the outset.

The conditional distribution in a two-state DAMM is

ftjt�1(yt) = �tjt�1f1;tjt�1(yt) + (1� �tjt�1)f2;tjt�1(yt); t = 1; :::; T; (34)
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where �tjt�1 is the probability of being in state one at time t; based on infor-

mation available up to and including time t� 1: A logistic link function

�tjt�1 =
exp(
tjt�1)

1 + exp(
tjt�1)
; �1 < 
tjt�1 <1; (35)

con�nes �tjt�1 to the range 0 < �tjt�1 < 1: The score with respect to 
tjt�1;

but written in terms of �tjt�;1; is

ut =
@ ln ftjt�1
@
tjt�1

=
f1;tjt�1 + (1� �tjt�1)f2;tjt�1

ftjt�1
�tjt�1(1� �tjt�1) (36)

and this drives a dynamic equation. The �lter in the Markov chain switching

model depends on similar variables to those in ut:

The score for a dynamic parameter within a regime of a DAMM is

@ ln ftjt�1
@�i

=
@ ln ftjt�1
@fit

@fi;tjt�1
@�i

= �i;tjt�1
fit
ftjt�1

@ ln fit
@�i

= �i;t
@ ln fi;tjt�1

@�i
; i = 1; 2;

where �1;tjt�1 = �tjt�1 and �2;tjt�1 = 1 � �tjt�1: When �i;t; the probability

of being in a given regime, is small, the contribution of the observation to

the score is downweighted; there is no such weighting in Markov-switching

models.

The DAMM can be combined with other score-driven models. For ex-

ample, Harvey and Palumbo (2021) set up a bivariate model for wind speed

and direction with EGARCH e¤ects. The aim is to capture the switching

between two prevailing winds at a site in North-West Spain. The �ltered

probability, �tjt�1; of being in the higher state, that is around four radians,

is shown in Figure 5. The data lie between 0 and 2� radians, with the circu-

larity meaning that observations near the top of the graph are close to those

at the bottom.
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Figure 5: Filtered regime probability for wind direction from a two-regime
heteroscedastic von Mises model. Vertical axis is direction in radians and
regime probability from 0 to 1. The horizontal axis is for hours at the end of
January 2004.

29



8.4 Dynamic shape parameters, adaptive models and

missing observations

8.4.1 Changing degrees of freedom

Dynamic models for shape parameters may be formulated using the score-

driven approach. For example the degrees of freedom, �, in a t-distribution

may change over time. The score for � = � ln � is

@ ln ft
@�

=
�

2
 (�=2)� �

2
 ((� + 1)=2) +

1

2
� � + 1

2
bt �

�

2
ln(1� bt); (37)

where bt is as in the score for scale, (20), and  (:) is the digamma function.

Figure 6 plots this score against the standardized y for � = 5: As y moves

towards the tails, � increases and so the degrees of freedom falls. This be-

haviour contrasts with that of the score for the logarithm of scale, �; which is

bounded as y ! �1. It is interesting that the sum of the third and fourth

terms in (37) is equal to the score of � multiplied by �1=2. As in other
instances, the behaviour of the score makes perfect sense. The only di¢ culty

in implementing shape parameter �lters like this one is that a large sample

is needed to obtain reliable estimates. Most of the applications so far have

been for �nancial time series with several thousand observations.

8.4.2 Adaptive models

Nonstationary time series are sometimes subject to sudden upward or down-

ward shifts. A score-driven �lter will adapt to such breaks. However, it

may be possible to speed up the adjustment by introducing a second layer

of dynamics into the model. Thus in the location model, (9), � becomes

�t+1jt and this evolves according to a dynamic equation in which the forcing

variable is the conditional score @ ln ft=@�tjt�1 = utut�1; see Blasques et al

(2019). Adaptive models are also discussed in Delle Monache and Petrella

(2017).
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Figure 6: Score for � (bold) and score for logarithm of scale, �; against
standardized y:

8.4.3 Missing observations

A practical way of dealing with a missing observation is to set ut = 0 and to

drop that time period from the likelihood function. Thus the �lter makes no

adjustment for the increased variance, as in the linear Gaussian model where

the solution is exact. Furthermore the conditional distribution is assumed to

be the same as that of the one-step ahead conditional distribution. Blasques,

Gorgi and Koopman (2021) provide a more theoretically sound solution to

the problem of missing observations by using indirect inference.

9 Beyond the score

The function to be maximized need not be a likelihood. For example it may

be a sum of squares or absolute values, a quasi-likelihood or a robust function,
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such as an M -estimator as in Maronna et al (2006). Dynamic quantiles and

kernels may be obtained in this way and the dynamic equations for them

may be constructied by a natural extension to the score-driven framework.

A sample quantile, e�(�); 0 < � < 1; can be obtained as the solution to

the minimization of

S� (�) =
TX
t=1

�� (yt��) =
X
yt<�

(��1)(yt��)+
X
yt��

�(yt��); 0 < � < 1; (38)

with respect to � = �(�); where �� (:) is the check function. The derivative of

this criterion function is the quantile indicator function

IQ(yt � �t(�)) =

(
� � 1; yt < �t(�);

� ; yt > �t(�);
t = 1; :::; T; (39)

where IQ(0) is not determined, but can be set to zero; see De Rossi and

Harvey (2009). This indicator provides the forcing variable, ut(�); in the

quantile �lter

�t+1jt(�) = ��tjt�1(�) + �ut(�): (40)

The quantile indicator plays a similar role to that of the conditional score.

Indeed it is the score for an asymmetric Laplace distribution.

The �lter in (40) belongs to the class of CAViaR models proposed by

Engle and Manganelli (2004) in the context of tracking value at risk (VaR).

In CAViaR, the �lter is driven by a function of yt, but includes an adaptive

model, which in a limiting case has the same form as (40). Other CAViaR

speci�cations, which are based on actual values, rather than indicators, are

not only inconsistent with the quantile framework but may su¤er from a lack

of robustness to outliers.

Patton et al (2019) show that it is possible to set up a joint dynamic

model for VaR, that is �tjt�1(�), and expected shortfall, Et�1(yt j �tjt�1(�)):
The forcing variables depend on conditional quantiles and expectiles.
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Harvey and Oryshchenko (2011) construct a dynamic kernel estimator for

the PDF of a time series. The criterion function for the observation at time

t; is

�(ytjftjt�1(y)) = �
1

2

�
1

h
K

�
yt � y

h

�
� ftjt�1(y)

�2
; �1 < y; yt <1; t = 1; :::; T;

where K(:) is a kernel, and di¤erentiating with respect to ftjt�1(y) gives the

forcing variable

ut(ftjt�1(y)) =
1

h
K

�
yt � y

h

�
� ftjt�1(y); t = 1; :::; T: (41)

The updating �lter in the basic case is then

ft+1jt(y) = (1� �)fT (y) + �ftjt�1(y) + �ut; t = 1; ::; T;

where ut = ut(ftjt�1(y)): The application in Harvey and Oryshchenko (2011)

has � set to one.

10 Conclusion

Modelling the dynamics in nonlinear time series by the score of the condi-

tional distribution provides a comprehensive and uni�ed solution to a range

of problems. Estimation is by maximum likelihood and is usually straight-

forward. Tests, including diagnostics based on the Lagrange multiplier ap-

proach, can be formulated.

It might be thought that assuming a particular parametric distribution

makes the resulting �lter vulnerable to misspeci�cation. On the contrary,

basing a model on a heavy-tailed distribution makes it far more robust than

methods, such as quasi-maximum likelihood, that are usually motivated by

analogies with Gaussian models.
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